US009342319B1

a2z United States Patent (10) Patent No.: US 9,342,319 B1
Tene et al. 45) Date of Patent: *May 17, 2016
(54) ACCELERATED CLASS CHECK (58) Field of Classification Search
CPC ..ocvvvvvvineerccnen GOGF 9/4428; GOG6F 9/455
(71) Applicant: Azul Systems, Inc., Sunnyvale, CA (US) See application file for complete search history.
(72) Inventors: Gil Tene, Los Altos Hills, CA (US); Cliff (56) References Cited
N. Click, Jr., San Jose, CA (US);
Murali Sundaresan, Sunnyvale, CA U.S. PATENT DOCUMENTS
(US)5 MIChael A' WOIf5 San FranCISCO5 5’615,400 A * 3/1997 COWSa.r et al """""""" 719/332
CA (US) 6,161,217 A * 12/2000 Detlefs etal. ... - 717/141
6,598,141 B1* 7/2003 Dussudetal. .. . 711/170
(73) Assignee: Azul Systems, Inc., Sunnyvale, CA (US) 7,069,540 B1* 6/2006 Sievert 717/120
2002/0194191 Al* 12/2002 Sexton et al. ... 707/102
(*) Notice: Subject to any disclaimer, the term of this 2003/0177152 A1* 972003 Damell ..o 707/206
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days.
. The Java HotSpot Virtual Machine, May 2001, Sun Microsystems,
This patent is subject to a terminal dis- Inc., pp. 1-23.%
claimer. Feng Qian, Towards Dynamic Interprocedural Analysis in JVMs,
Oct. 21, 2003, pp. 1-14.%
(21) Appl. No.: 14/457,042
* cited by examiner
(22) Filed: Aug. 11,2014
Primary Examiner — Syed Roni
Related U.S. Application Data (74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP
(63) Continuation of application No. 13/227,111, filed on 7 ABSTRACT
Sep. 7, 2011, now Pat. No. 8,839,274, which is a Handling a virtual method call includes extracting, from a
continuation of application No. 11/296,652, ﬁleq on pointer to an object, an identifier associated with the class of
Dec.. 6, 2.005., now Pat. NO: 8593754825 which is a the object, the pointer to the object being associated with the
continuation-in-part of application No. 11/227,419, virtual method call, and the identifier being embedded within
filed on Sep. 14, 2005, now Pat. No. 7,987,473. the pointer; using the identifier to obtain a virtual method
(60) Provisional application No. 60/610,028, filed on Sep. table,.lncludlilg l?.catlnfg alﬁrst.zntr}./én aclass identifier tgble
14. 2004 mapping a plurality of class identifiers to a corresponding
’ ’ plurality of class data, the first entry being associated with the
51y Int. Cl identifier and comprising the virtual method table or a pointer
G GII0;$F 9 /54 2006.01 used to obtain the virtual method table; locating a second
(01) entry in the virtual method table, the second entry being
Go6l’ 9/44 (2006.01) associated with the virtual method call; and jumping to an
GO6F 9/455 (2006.01) address associated with the second entry to execute code at
(52) US.CL the address.
CPCcccee. GO6F 9/4428 (2013.01); GOGF 9/455

(2013.01)

23 Claims, 6 Drawing Sheets

Obtain Class Identifier
from Object Pointer

| -602

Use the Class |dentifier
to Obtain Virtual Method
Table

| -604

Locate Virtual Method
Table Entry Associated
with Virtual Call

| -606

Jump Execution to an
Address Associated with
the Located Virtual
Method Table Entry

| -608

U.S. Patent

May 17, 2016 Sheet 1 of 6 US 9,342,319 B1

VA

| ~102

Object

\
_\
o
=

Class Structure
Pointer :

Class Structure

Class
information

PRIOR ART

FIG. 1

U.S. Patent May 17, 2016 Sheet 2 of 6 US 9,342,319 B1
206 204
\‘ \‘ 202
ceo ciD VA 4
’w\,/

Header

FIG. 2
CiD Table

CiD Class Address

U.S. Patent May 17, 2016 Sheet 3 of 6 US 9,342,319 B1

Extract Non-Address Bits | -402
from an Object Pointer

l

Interpret the Bits as an
Identifier of the Class of |~404
the Object

l

Determine the Class of
the Object to Correspond |~ 4%6
to the Identifier

FIG. 4

U.S. Patent May 17, 2016 Sheet 4 of 6 US 9,342,319 B1

Obtain CID |~ 502

|

Obtain Identifier of the
Class to be Compared to L~ 504
the CID

~510

Ma,?tch Match Fail

Yes
508

Match Success

U.S. Patent May 17, 2016 Sheet 5 of 6 US 9,342,319 B1

Obtain Class |dentifier 602
from Object Pointer

|

Use the Class ldentifier
to Obtain Virtual Method |~ 5Y4
Table

|

Locate Virtual Method
Table Entry Associated |~ 606
with Virtual Call

|

Jump Execution to an
Address Associated with | -608
the Located Virtual
Method Table Entry

FIG. 6

U.S. Patent May 17, 2016 Sheet 6 of 6 US 9,342,319 B1
702 704 706
. . \\ 200
Opcode | First Field Second Field 7~

US 9,342,319 B1

1
ACCELERATED CLASS CHECK

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/227,111, entitled ACCELERATED CLASS
CHECK filed Sep. 7, 2011 now U.S. Pat. No. 8,839,274
which is incorporated herein by reference in its entirety for all
purposes, which is a continuation of U.S. patent application
Ser. No. 11/296,652, entitled ACCELERATED CLASS
CHECK filed Dec. 6, 2005 now U.S. Pat. No. 8,037,482
which is incorporated herein by reference in its entirety for all
purposes, which is a continuation in part of U.S. patent appli-
cation Ser. No. 11/227,419 entitled ACCELERATED CLASS
CHECK filed Sep. 14, 2005, now U.S. Pat. No. 7,987,473,
which is incorporated herein by reference in its entirety for all
purposes, which claims priority to U.S. Provisional Patent
Application No. 60/610,028 entitled VIRTUAL MACHINE
filed Sep. 14, 2004, which is incorporated herein by reference
in its entirety for all purposes.

BACKGROUND OF THE INVENTION

In object oriented programming languages, determining
information about a class of an object from an object pointer
can consume a large amount of performance resources. FIG.
1 is a block diagram illustrating a relationship between an
object pointer, an object, and a class structure. Object pointer
102 includes a virtual memory address of object 104. Object
104 contains information associated with the object and
includes a pointer to class structure 106 associated with the
class of object 104. For each class in a program, there exists
only one class structure. Objects belonging to the same class
contain the same pointer to the same class structure. Class
structure 106 includes information associated with an object
class. Given a pointer of an object, it is often desired to
determine if the class of the object associated with the pointer
belongs to a known class. Since class structure pointers refer
to the only class structure of a class, the value of a class
structure pointer can be used as an identifier to compare
object classes. An object is stored in memory using the given
object pointer, and the class structure pointer is obtained from
the object. The obtained class structure pointer is compared
with a known class structure pointer value to determine if the
class of the object associated with the given object pointer is
same as the class associated with the known class object
pointer value. This comparison process can consume a large
amount of performance resources. Loading the object using
the given object pointer usually produces a cold cache miss,
causing misses in every cache level. A large number of clocks
cycles are wasted as the object is brought into the cache from
main memory. Since class comparisons are very common
operations in object oriented language programs, it is desir-
able to speed up class comparison operations. Therefore,
there exists a need for a more efficient way to obtain data
associated with a class of an object.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating a relationship
between an object pointer, an object, and a class structure.

FIG. 2 is a diagram illustrating an embodiment of an object
pointer.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a diagram illustrating an embodiment of a table
including one or more class identifiers.

FIG. 4 is a flow chart illustrating an embodiment of a
process for determining a class of an object.

FIG. 5 is a flow chart illustrating an embodiment of a
process for performing a comparison associated with a class
identifier of an object pointer.

FIG. 6 is a flow chart illustrating an embodiment of a
process for handling a virtual method call.

FIG. 7 is a diagram illustrating an embodiment of a com-
puter processor instruction.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process, an apparatus, a system, a composition
of matter, a computer readable medium such as a computer
readable storage medium or a computer network wherein
program instructions are sent over optical or electronic com-
munication links. In this specification, these implementa-
tions, or any other form that the invention may take, may be
referred to as techniques. A component such as a processor or
a memory described as being configured to perform a task
includes both a general component that is temporarily con-
figured to perform the task at a given time or a specific
component that is manufactured to perform the task. In gen-
eral, the order of the steps of disclosed processes may be
altered within the scope of the invention.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 2 is a diagram illustrating an embodiment of an object
pointer. Box 202 represents an object pointer. The object
pointer may include any number of bits. Often the number of
bits of an object pointer is larger than the number of bits
required to represent the total amount of memory addressable
on a system. For example a 64 bit object pointer can address
16 billion gigabytes of data. At least some bits of the object
pointer can be used as header bits (bits not implemented as
address bits). Object pointer 202 includes virtual address bits
204 that refer to an object associated with virtual address 204.
The numbers of bits used to contain the virtual address may be
preconfigured or dynamically configured. In some embodi-
ments, the numbers of bits used to contain the virtual address
is associated with the maximum amount of memory that can
physically exist on a system. At least a portion of the header
of object pointer 202 includes class identifier (CID) bits 206.
The header may include other data. Class identifier 206 is
associated with at least one class structure pointer. The num-
ber of bits comprising class identifier 206 may be preconfig-
ured or configured dynamically. In some embodiments, the
number of bits comprising class identifier 206 is less than the
number of bits comprising a call information object pointer.
In some embodiments, the number of classes in a program is

US 9,342,319 B1

3

less than or equal to the number of classes representable by
the number of bits used to contain class identifier 206. Each
class in the program may be associated with a unique class
identifier. In some embodiments, a class identifier is associ-
ated with more than one class in a program. For example if the
number of classes in a program is greater than the number of
classes representable by the number of bits used to contain
class identifier 206, a single class identifier may be associated
with more than one class. To identify these classes associated
with the single class identifier, the object associated with
virtual address 204 may be loaded to obtain the class structure
pointer.

FIG. 3 is a diagram illustrating an embodiment of a table
including one or more class identifiers. The table may contain
data associated with the class identifier. Data contained the
table may be located using a class identifier. The class iden-
tifiers may be CID 206 of F1G. 2. The table may include table
entries each associated with a different possible valid CID
value, where all valid CID values are associated in the table.
For example, each valid CID value associated with a class in
a program may be stored as an entry in the table. The one or
more class identifiers in a table entry may be associated with
aclass structure pointer in the table entry. For example, a table
entry includes a CID and a class structure pointer both asso-
ciated with the same class. In some embodiments if a CID is
associated with more than one class, the CID is associated
with a table entry indicating more than one class is associated
with the CID. By storing and associating a CID with a class
structure pointer, the class structure pointer may be accessed
by using the CID to obtain the class structure pointer from the
table rather than loading an object using a virtual address to
obtain the class structure pointer. The aggregation of CIDs
and associated class data in a table can improve data locality
in programs where the associated class data is accessed fre-
quently. In some embodiments, at least a portion of informa-
tion in a class structure is stored in a table entry associated
with a class identifier. In some embodiments, a virtual method
table and a class identifier, both associated with the same
class, are included together in a table entry. In some embodi-
ments, a pointer to a virtual method table and a class identifier,
both associated with the same class, are included together in
a table entry. The virtual method table may be used to invoke
methods associated with the class. For example, a desired
class method may be invoked by using a CID in the object
pointer to locate an entry in the class identifier table contain-
ing a class method table associated with the class of the object
pointer and invoking the desired method in the method table.
In some embodiments, the virtual method table includes a
start address of each method defined in a class or inherited
from a superclass.

FIG. 4 is a flow chart illustrating an embodiment of a
process for determining a class of an object. At 402, one or
more non-address bits are extracted from an object pointer.
Non-address bits may be CID 206 of FIG. 2. The object
pointer may be object pointer 202 of FIG. 2. Extracting the
bits may include obtaining a subset of bits from the object
pointer. For example, a mask, a bit wise operation, or a shift-
ing operation is used to obtain one or more header bits of the
object pointer. At 404, the extracted bits are interpreted as an
identifier of the class of the object associated with the object
pointer. Interpreting the extracted bits as an identifier of the
class of the object may include performing processing
required to use the bits as an identifier associated with the
object pointer. The processing may include loading the
extracted bits into an immediate field of a processor instruc-
tion or loading the bits into a register. At 406, the class of the
object associated with the object pointer is determined to

5

10

15

20

25

30

35

40

45

50

55

60

65

4

correspond to the extracted identifier. In some embodiments,
determining the class of the object to correspond to the iden-
tifier includes validating the extracted bits as a valid identifier.
In other embodiments, determining the class of the object to
correspond to the identifier includes comparing the extracted
bits with a known value. The known value may be a class
identifier value associated with a desired class to be used in
the comparison.

FIG. 5 is a flow chart illustrating an embodiment of a
process for performing a comparison associated with a class
identifier of an object pointer. In some embodiments, the
process of FIG. 5 is included in 406 of FIG. 4. At 502, a CID
of the object pointer is obtained. Obtaining the CID may
include reading and/or loading the CID value to/from a reg-
ister or an immediate field of an instruction. In some embodi-
ments, obtaining the CID includes extracting CID bits from
the object pointer. At 504, a comparison identifier of the class
to be compared to the CID is obtained. The comparison iden-
tifier may be a preconfigured or dynamically determined class
identifier value. In some embodiments the comparison iden-
tifier is a class identifier value of the currently executing
program object. Obtaining the comparison identifier may
include reading and/or loading the identifier value to/from a
register or an immediate field of an instruction. At 506, the
obtained CID value and the obtained comparison identifier
are compared. If at 506 it is determined the values match,
match success is reached at 508. A successful match may
indicate an object associated with the obtained CID belongs
to the same class as the class associated with the comparison
identifier. If at 506 it is determined that the values do not
match, match fail is reached at 510. In some embodiments,
match fail results in a comparison of the obtained CID with
another comparison identifier or the class structure pointer
(associated with the object pointer of the obtained CID) is
obtained to determine a class associated with the object
pointer. In some embodiments, the match fail is associated
with a hardware trap. The hardware trap may be associated
with a software fixup.

Some object oriented programming languages support vir-
tual method calls. For a same method call site, different code
can be executed depending upon the class of the object asso-
ciated with the virtual call. The target method of virtual calls
can only be determined at run-time based at least in part on the
class of the object associated with the call. Traditionally,
performing the virtual call requires sequence of loads fol-
lowed by an indirect register jump (indirect jumps often take
longer to perform compared to direct jump used in static
method calls) to a section of code associated with the virtual
call. For example, handling a virtual call includes, loading the
class structure from the object, locating the virtual method
table from the class structure, loading an address associated
with the matching virtual method table entry of the virtual
call, and jumping to the loaded address. Each load can poten-
tially cause cache misses in all levels of the cache and evict
other useful data from the cache. The performance penalty of
the loads and the indirect jump can add up significantly if the
virtual calls are invoked often.

FIG. 6 is a flow chart illustrating an embodiment of a
process for handling a virtual method call. At 602, a class
identifier is obtained from an object pointer associated with
the virtual method call. Obtaining the class identifier may
include reading and/or loading the CID value to/from a reg-
ister or an immediate field of an instruction. In some embodi-
ments, obtaining the class identifier includes extracting CID
bits from the object pointer. At 604, the obtained class iden-
tifier is used to obtain a virtual method table. The virtual
method table may be obtained by locating an entry in a class

US 9,342,319 B1

5

identifier table associated with the obtained class identifier.
The entry may include the desired virtual method table or a
pointer to the virtual method table. In some embodiments, the
entry includes an object information pointer that is used to
obtain the virtual method table. At 606, a table entry in the
virtual method associated with the virtual call is located.
Locating the entry may include searching the table to find an
address associated with a code section of the desired method
call. At 608, execution is jumped to an address associated
with the located virtual method table entry. The address may
be a program address and/or a memory address. Jumping
execution may include loading an address value into a register
and performing a register jump operation. By using a class
identifier (e.g. CID) stored in the header of an object pointer
and a class identifier table associating the class identifier with
a virtual method table, the one or more loads can be elimi-
nated in handling virtual method calls. The virtual call
directly causes only a class identifier table entry (including a
virtual method table) associated with the CID bits of an object
pointer needs to be loaded.

In some embodiments, “inline caches” may be used to
handle virtual method calls. Using inline caches includes
predicting a likely class of the object associated with a virtual
call and statically jumping to a predetermined address of a
code section if the class prediction is correct. The predicted
class and the predetermined address may be a class and an
address associated with a previous virtual call at the same
virtual call site. Determining if the last prediction is correct
may include comparing the class of the object associated with
the virtual call with the predicted class. In some embodi-
ments, the process of FIG. 5 is included in class comparison.
The class comparison may be performed using a class iden-
tifier stored in the header of an object pointer. For example,
CID bits may be extracted from an object pointer associated
with a virtual call and used to compare with a class identifier
value associated with the predicted class. If the values match,
execution jumps to the predetermined address of a code sec-
tion and if the values do not match, a virtual method table is
used to indirectly jump to the correct section of code.

FIG. 7 is a diagram illustrating an embodiment of a com-
puter processor instruction. Instruction 700 includes opcode
702, first field 704, and second field 706. First field 704 is
associated with an object pointer. The object pointer, in some
embodiments, is object pointer 202 of FIG. 2. Second field
706 is associated with a comparison class. The comparison
class, in some embodiments, is associated with a value to be
compared with CID 206 of FIG. 2. In some embodiments,
field 704 and/or field 706 include an instruction operand.
Fields 704 and 706 include one or more bits that represent a
value or an identifier associated with a value used in an
operation of the instruction. For example, field 704 and/or
field 706 include one or more of the following: bit(s) that
represent a value (e.g., immediate value) to be directly used in
an operation of the instruction, memory address associated
with a value to be used in an operation, and an identifier of a
register containing a value to be used in an operation. The
value may include a location identifier of an object. The
example shown includes two fields, yet in other embodi-
ments, instruction 700 may include one or more than two
fields. In some embodiments, at least one field of instruction
700 is used to specity a configuration associated with the
instruction. Examples of configurations include instruction
format specification, format of an instruction field, and con-
figuration associated with an operation of the instruction. In
some embodiments, a processor uses opcode 702 to deter-
mine one or more operations associated with the instruction.
In some embodiments, the one or more operations include

10

15

20

25

30

35

40

45

55

60

65

6

comparing the class of the object pointer associated with the
first field with the comparison class associated with the sec-
ond field. For example, if a class identifier included in the
object pointer does not match an expected class (comparison
class), atrap is performed. In some embodiments, instruction
700 is associated with the process of FIG. 5. For example, the
object pointer of FIG. 5 is associated with first field 704 and
the comparison identifier in 505 of FIG. 5 is associated with
second field 706.

In various embodiments, instruction 700 is associated with
an object method (program function) invocation, and pro-
cessing associated with the instruction includes performing
one or more operations to prepare, handle, and/or execute the
invocation. For example, data associated with a stack frame is
modified. In some embodiments, instruction 700 is associated
with the process of FIG. 6. The object pointer of FIG. 6 is
associated with first field 704. For example, instruction 700 is
at least in part used to handle a virtual method call. A pointer
to an object associated with the virtual call is associated with
first field 704, and a likely class (predicted class) of the object
associated with the virtual call is associated with second field
706. CID bits are extracted from the object pointer associated
with first field 704 and used in a comparison with the class
identifier associated with second field 706. In various
embodiments, if the values match in the comparison, execu-
tion jumps to the predetermined address of a code section; and
if the values do not match, a virtual method table is used to
indirectly jump to the correct section of code.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system, comprising:

a set of one or more processors configured to:

extract, from a pointer to an object, a class identifier
embedded within the pointer that is associated with a
class of the object, wherein the pointer to the object is
associated with a virtual method call;

subsequent to extracting the class identifier from the
pointer to the object, use the extracted class identifier
to locate a first entry in a class identifier table associ-
ated with the extracted class identifier;

subsequent to locating the first entry in the class identi-
fier table associated with the extracted class identifier,
use the located first entry to obtain a virtual method
table;

locate a second entry in the obtained virtual method
table, wherein the second entry is associated with the
virtual method call associated with the pointer to the
object; and

jump to an address associated with the second entry to
execute code at the address; and

a memory coupled to the set of one or more processors and

configured to provide the set of one or more processors
with instructions.

2. The system of claim 1, wherein using the extracted class
identifier to locate the first entry includes comparing the
extracted class identifier to a comparison value that is a pre-
dicted object class identifier for the object, and the first entry
in the class identifier table associated with the extracted class
identifier is located in response to determining that the
extracted class identifier does not match the comparison
value.

3. The system of claim 2, wherein the comparison value is
dynamically determined.

US 9,342,319 B1

7

4. The system of claim 2, wherein reaching the determina-
tion includes performing a trap when the extracted class iden-
tifier does not match the comparison value.

5. The system of claim 2, wherein the comparison value is
associated with a previous virtual call.

6. The system of claim 1, wherein locating the second entry
in the virtual method table includes searching the virtual
method table to find an address associated with a code section
of the virtual method call.

7. The system of claim 1, wherein the set of one or more
processors are further configured to modify data associated
with a stack frame.

8. The system of claim 1, wherein the object is not loaded.

9. The system of claim 1, wherein the extracted class iden-
tifier has fewer bits than a number of bits used to represent a
class structure associated with the object.

10. The system of claim 1, wherein the extracted class
identifier has fewer bits than a total number of bits not imple-
mented as address bits in the pointer to the object.

11. The system of claim 1, wherein the class identifier table
maps a plurality of class identifiers to a corresponding plu-
rality of class data.

12. The system of claim 1, wherein the first entry comprises
either the virtual method table or a pointer used to obtain the
virtual method table.

13. A method, comprising:

extracting, from a pointer to an object, class identifier

embedded within the pointer that is associated with a
class of the object, wherein the pointer to the object is
associated with a virtual method call;

subsequent to extracting the class identifier from the

pointer to the object, using the extracted class identifier
to locate a first entry in a class identifier table associated
with the extracted class identifier;
subsequent to locating the first entry in the class identifier
table associated with the extracted class identifier, using
the located first entry in the class identifier table to obtain
a virtual method table;

locating, using a set of one or more processors, a second
entry in the obtained virtual method table, wherein the
second entry is associated with the virtual method call
associated with the pointer to the object; and

jumping to an address associated with the second entry to

execute code at the address.

14. The method of claim 13, wherein using the extracted
class identifier to locate the first entry includes comparing the
extracted class identifier to a comparison value that is a pre-
dicted object class identifier for the object, and the first entry

10

15

20

25

35

40

45

8

in the class identifier table associated with the extracted class
identifier is located in response to determining that the
extracted class identifier does not match the comparison
value.

15. The method of claim 14, wherein the comparison value
is dynamically determined.

16. The method of claim 14, wherein reaching the deter-
mination includes performing a trap when the extracted class
identifier does not match the comparison value.

17. The method of claim 14, wherein the comparison value
is associated with a previous virtual call.

18. The method of claim 13, wherein locating the second
entry in the virtual method table includes searching the virtual
method table to find an address associated with a code section
of the virtual method call.

19. The method of claim 13, further comprising modifying
data associated with a stack frame.

20. The method of claim 13, wherein the object is not
loaded.

21. The method of claim 13, wherein the extracted class
identifier has fewer bits than a number of bits used to repre-
sent a class structure associated with the object.

22. The method of claim 13, wherein the extracted class
identifier has fewer bits than a total number of bits not imple-
mented as address bits in the pointer to the object.

23. A computer program product embodied in a non-tran-
sitory computer readable storage medium and comprising
computer instructions for:

extracting, from a pointer to an object, a class identifier

embedded within the pointer that is associated with a
class of the object, wherein the pointer to the object is
associated with a virtual method call;

subsequent to extracting the class identifier from the

pointer to the object, using the extracted class identifier
to locate a first entry in a class identifier table associated
with the extracted class identifier;
subsequent to locating the first entry in the class identifier
table associated with the extracted class identifier, using
the located first entry in the class identifier table to obtain
a virtual method table;

locating a second entry in the obtained virtual method
table, wherein the second entry is associated with the
virtual method call associated with the pointer to the
object; and

jumping to an address associated with the second entry to

execute code at the address.

#* #* #* #* #*

